Абсолютная и относительная рефрактерность. Рефрактерность

В сравнении с электрическими импульсами, возникающими в нервах и скелетных мышцах, продолжительность сердечного потенциала действия значительно длиннее. Это обусловлено длительным рефрактерным периодом, во время которого мышцы невосприимчивы к повторным стимулам. Эти длительные периоды физиологически необходимы, так как в это время происходит выброс крови из желудочков и их последующее наполнение для очередного сокращения.

Как показано на рисунке 1.15, во время потенциала действия различают три уровня рефрактерности. Степень рефрактерности исходно отражает количество быстрых Na+ каналов, которые вышли из своего неактивного состояния и способны открыться. В течение фазы 3 потенциала действия увеличивается число Na+ каналов, вышедших из неактивного состояния и способных отвечать на деполяризацию. Это, в свою очередь, повышает вероятность того, что стимулы вызовут развитие потенциала действия и приведут к его распространению.

Абсолютный рефрактерный период - это период, в течение которого клетки полностью нечувствительны к новым стимулам. Эффективный рефрактерный период состоит из абсолютного рефрактерного периода, но, продолжаясь за его пределы, включает еще и короткий интервал фазы 3, в течение которого раздражитель возбуждает локальный потенциал действия, который недостаточно силен, чтобы распространиться дальше. Относительный рефрактерный период - это интервал, в течение которого раздражители возбуждают потенциал действия, который может распространяться, но характеризуется меньшей скоростью развития, более низкой амплитудой и меньшей скоростью проведения из-за того, что в момент стимуляции клетка имела менее отрицательный потенциал, чем потенциал покоя.

После относительного рефрактерного периода выделяют короткий период сверхнормальной возбудимости, в котором раздражители, сила которых ниже нормальной, могут вызывать потенциал действия.

Рефрактерный период клеток предсердия короче, чем клеток миокарда желудочков, поэтому ритм предсердий может значительно превышать ритм желудочков при тахиаритмиях

Проведение импульса

Во время деполяризации электрический импульс распространяется по кардиомиоцитам, быстро переходя на соседние клетки, благодаря тому, что каждый кардиомиоцит соединяется с соседними клетками через контактные мостики с низким сопротивлением. Скорость деполяризации ткани (фаза 0) и скорость проведения по клетке зависит от числа натриевых каналов и величины потенциала покоя. Ткани с высокой концентрацией Na+ каналов, такие как волокна Пуркинье, имеют большой быстрый входящий ток, который быстро распространяется внутри и между клетками и обеспечивает быстрое проведение импульса. В противоположность этому, скорость проведения возбуждения будет значительно ниже в клетках с менее отрицательным потенциалом покоя и большим количеством неактивных быстрых натриевых каналов (рис. 1.16). Таким образом, величина потенциала покоя сильно влияет на скорость развития и проведения потенциала действия.

Нормальная последовательность сердечной деполяризации

В норме электрический импульс, вызывающий сердечное сокращение, вырабатывается в синоатриальном узле (рис. 1.6). Импульс распространяется в мышцы предсердий через межклеточные контактные мостики, которые обеспечивают непрерывность распространения импульса между клетками.

Обычные мышечные волокна предсердий участвуют в распространении электрического импульса от СА- к АВ-узлу; в отдельных местах более плотное расположение волокон облегчает проведение импульса.

В связи с тем, что предсердно-желудочковые клапаны окружает фиброзная ткань, прохождение электрического импульса от предсердий к желудочкам возможно только через АВ-узел. Как только электрический импульс достигает атриовентрикулярного узла, происходит задержка его дальнейшего проведения (приблизительно в 0,1 секунды). Причиной задержки служит медленное проведение импульса волокнами малого диаметра в узле, а также медленный пейсмекерный тип потенциала действия этих волокон (необходимо помнить, что в пейсмекерной ткани быстрые натриевые канальцы постоянно неактивны, и скорость возбуждения обусловлена медленными кальциевыми канальцами). Пауза в проведении импульса в месте атриовентрикулярного узла полезна, так как она дает предсердиям время для их сокращения и полного освобождения от содержимого до начала возбуждения желудочков. В добавление к этому, такая задержка позволяет атриовентрикулярному узлу выполнять функцию привратника, препятствуя проведению слишком частых стимулов от предсердий к желудочкам при предсердных тахикардиях.

Выйдя из атриовентрикулярного узла, сердечный потенциал действия распространяется по быстро проводящим пучкам Гиса и волокнам Пур-кинье к основной массе клеток миокарда желудочков. Это обеспечивает координированное сокращение кардиомиоцитов желудочков.

Рефрактерные периоды отражают способность тканей к проведению двух последовательных импульсов. Второй импульс является результатом проводимой стимуляции; первый же может быть спонтанным или искусственно вызванным. Оценка рефрактерных периодов не позволяет прямо определить время проведения. Различия между временем проведения и длительностью рефрактерных периодов показаны на рис. 5.7. В качестве примера на нем представлен АВ-узел как часть проводящей системы. Электрическая активность регистрируется электродами, расположенными около входа и выхода данной системы. Для АВ-узла и вход (нижнепредсердный потенциал), и выход (потенциал пучка Гиса) регистрируется одним электродом. Для других тканей могут потребоваться отдельные электроды. Интервал проведения представляет абсолютное время, необходимое для прохождения одиночного импульса (Si) по участку проводящей системы; в случае АВ-узла это интервал А-Н (А\-Hi).

При измерении рефрактерных периодов оценивается разница в проведении двух последовательных импульсов: S\ (спонтанный или искусственный) иSs (искусственный). При этом абсолютное время проведения не определяется, скорее сравниваются задержки между импульсами на выходе и входе в проводящую ткань. Чем теснее сцепление двух импульсов, тем больше вероятность замедленного проведения второго импульса вследствие рефрактерности ткани. В результате рефрактерности длина интервала S1-S2, измеренная на выходе, больше, чем на входе. В случае АВ-узла задержка на выходе(H1 -Н2) сравнивается с интервалом сцепления на входе(А1-А2). Если влияние рефрактерности отсутствует, то разницы в проведении двух последовательных импульсов нет и интервалА1-A2 равен интервалуН1-H2. Это обычно наблюдается при относительно больших интервалах сцепления между S1 и S2. При более раннем возникновении второго импульса он попадает в частично рефрактерную ткань, вследствие чего его проведение через АВ-узел замедляется. В результатеHi-Нч становится большеA1-A2, или, иначе говоря, интервал проведенияА-Н импульсаS2 превышает таковой S1. Наибольший интервал сцепления(A1-A2), при котором это наблюдается, соответствует периоду относительной рефрактерности исследуемой ткани. Вышесказанное иллюстрирует график зависимости интервалов сцепления на выходе и входе (рис. 5.8). На интервал сцепления на выходе из АВ-узла(H1 -H2) влияет степень преждевременности импульсов (укорочениеH1-H2) вследствие уменьшенияА1-A2 и степень рефрактерности АВ-узла (удлинениеH1-H2 в результате задержки проведения с увеличениемА2-Н2). Как видно на рис. 5.8, при большей преждевременности импульсов уменьшение интервалаН1-Н2 продолжается, однако оно происходит медленнее из-за возрастающей рефрактерности. Часто достигается точка, в которой нарастание задержки проведения превышает степень снижения преждевременности импульсов, в результате чего длительность интервалаH1-Н2 становится больше наблюдавшейся при менее преждевременных импульсах. Это хорошо представляет восходящая часть кривой рефрактерных периодов. Может отмечаться точка, в которой существует полная рефрактерность. Второй импульс затем блокируется в пределах АВ-узла и на выходе (H2) не регистрируется. Эффективному рефрактерному периоду (ЭРП) соответствует наибольший интервал сцепления(А1А2), при котором отсутствует проведение. Анализ кривой показывает, что для целого ряда проведенных преждевременных импульсов имеется минимальный интервал на выходе(Н1-Н2); он соответствует функциональному рефрактерному периоду (ФРП).

Рис. 5.7. Интервалы проведения и рефрактерные периоды.

Рис. 5.8. Зависимость интерваловHi-Hiorинтервалов А\-Ai, полученных при электрографии пучка Гиса с целью определения рефрактерных периодов АВ-узлов (АВУ).

Нашло относительного рефрактерного периода (ОРП) определяется при появлении отклонения графика от линии равных значений интервалов. Функциональный рефрактерный период АВ-узла (ФРП) соответствует минимальному интервалу H1-H2. Эффективный рефрактерный период АВ-узла (ЭРП) соответствует наиболее короткому интервалу А1-А2, при котором сохраняется проведение через пучок Гиса.

Рефрактерные периоды определялись для различных тканей сердца при проведении как в антероградном, так и в ретроградном направлении. Измеряемые на входе и выходе параметры, необходимые для оценки рефрактерных периодов, перечислены в табл. 5.13. В табл. 5.14 представлены диапазоны нормальных значений обычно определяемых рефрактерных периодов. Различные ткани сердца различаются не только по величине абсолютных рефрактерных периодов, но и по форме кривой рефрактерных периодов. Для АВ-узла характерен выраженный подъем кривой, а его ФРП существенно превышает ЭРП. Кривые рефрактерных периодов предсердий и желудочков обычно приближаются к линии равных значений, причем ФРП часто бывает лишь на 10-30 мс больше ЭРП.

Следует отметить, что ОРП и ЭРП определяются по величине интервала сцепления на входе системы (в точке критических изменений проведения), тогда как ФРП определяется по величине интервала на выходе. Таким образом, для того чтобы полностью охарактеризовать рефрактерные периоды ткани, необходимо определить электрические события и на входе, и на выходе. Во многих ситуациях это может оказаться трудным. Рефрактерные периоды АВ-узла определяются по разнице между А1А2 иН1Н2, однако при этом предсердная рефрактерность не должна лимитироваться во время приложения преждевременного стимула. Если ФРП предсердий превышает ЭРП АВ-узла, точное определение последнего невозможно, поскольку рефрактерность предсердий ограничивает степень преждевременности импульсов на входе в АВ-узел; это наблюдается у 36 % пациентов. Часто бывает трудно оценить ретроградное проведение по системе Гис-Пуркинье, что во многих случаях связано с невозможностью регистрации ретроградного потенциала пучка Гиса. Рефрактерность подвержена влиянию многих факторов. На измеряемые величины могут существенно повлиять медикаментозные препараты и изменения вегетативного тонуса (см. табл. 5.8). Определенное влияние оказывает и частота основного сердечного ритма, при которой оценивается рефрактерность тканей. При учащении сердечного ритма рефрактерные периоды предсердий, системы Гис-Пуркинье и желудочков уменьшаются, а АВ-узла - увеличиваются.

Таблица 5.13. Измеряемые препараты, необходимые для оценки рефрактерных периодов

Исследуемая структура

Измерения

на входе

на выходе

Антеградное проведение

Предсердие

Система Гис - Пуркинье

V \- Vt

Проводящая система в целом

Ретроградное проведение

Желудочек

Система Гис-Пуркинье

V \- Vi

Hi - Hs "

A ,- As

Проводящая система в целом

Ретроградный Гис-потенциал; S - артефакт стимула; А - предсердная электрограмма; Н - потенциал пучка Гиса; V - желудочковая электрограмма; индекс 1 - первый импульс; индекс 2 - второй импульс.

Таблица 5.14. Нормальные величины рефрактерных периодов

Исследование

(лит. источник)

"ЭРП АВ-узла лимитируется ФРП предсердия у 36 % больных. АВУ - АВ-узел; СГП - система Гис-Пуркинье.

Рефрактерный период, наступающий после коитуса, отражает сексуальное, но не общее физическое истощение.

Об этом наглядно свидетельствует тот факт, что при смене полового партнера даже самец довольно быстро восстанавливает либидозную активность. У домашних животных, равно как и диких, повторные спаривания с коротким перерывом обычны. Так, бык, когда его выпускают после изоляции к текущей корове, совершает подряд 5-6 коитусов с эякуляцией. Жеребец может совершить до 10 садок подряд с короткими интервалами. Хряки за сутки совершают до 10 садок. В специальном тесте каждый из трех хряков, запущенных в стадо из девяти свиноматок с признаками эструса, за 25-часовой период совершили по восемь результативных садок. По сообщению J. О. Almquist и Е. В. Hale (1956), в 5-часовом тесте на половое истощение бык произвел 75 эякуляций. Однако самой большой половой выносливостью все-таки обладают бараны. Подсчитано, что в больших отарах с большим количеством самок в состоянии эструса баран-производитель на протяжении нескольких месяцев сохраняет высокую половую активность и совершает в среднем около 45 коитусов в неделю.

У собак после «замка» развивается рефрактерный период, в процессе которого и самец, и самка в течение 10-15 минут тщательно вылизывают свои половые органы. Как правило, после восстановления сука «вяжется» с другим самцом. Продолжительность рефрактерного периода кобеля значительно дольше по сравнению с продолжительностью рефрактерного периода самки. Эти половые различия обеспечивают участие в половом процессе нескольким самцам.

Коитальная рецептивность самок как общебиологическое явление изучена в меньшей мере по сравнению с половой активностью самцов. В литературе указывается, что при свободном содержании ярки и овцематки позволяют баранам делать садку не более 6 раз за весь период половой охоты. Примерно такие же цифры приводятся и для коров.

Исследователи полового поведения домашних животных отмечают, что при раздельнополом содержании животных в течение года и объединения самцов и самок в половой сезон животные склонны образовывать временные «семейные» пары. Быки после первого удачного коитуса остаются в непосредственной близости от самки до конца ее эструса. В этом случае животные занимают «параллельное или оппозитное» положение относительно друг друга.

На лошадях показано, что пара образуется после того, как кобыла подставит жеребцу свой зад и произведет демонстративное мочеиспускание. После этого следует ритуал покусывания жеребцом кобылы и лягание кобылой жеребца. У лошадей показателем образования брачной пары является положение партнеров, при котором они стоят нос к носу.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Возбудимость сердечной клетки изменяется в отдельные периоды сердечного цикла. Во время систолы сердечная клетка не возбуждается, т. е. она рефрактерна к раздраже­нию. Во время диастолы возбудимость сердечной клетки восстанавливается. Рефрактерность-это невозможность активизированной сердечной клетки снова] активироваться при дополнительном раздражении. Сердечная клетка, охваченная процессом электрического возбуждения и обладающая акционным потенциалом, не может создать другое допол­нительное электрическое возбуждение, другой акционный потенциал. Электрическое возбуждение полностью вовлекает в процесс систему ионов натрия клетки, вследствие чего отсутствует ионный субстрат, который мог бы ответить на дополнительное раздражение.

Различают три степени рефрактерности, соотв. периода: абсолютный, эффективный и относительный (релятивный) рефрактерный период (рис. 12).

Рефрактерность сердечной мышцы.

АРП- абсолютный рефрактерный период; ЭРП - эффективный рефрактерный период; О^П- относительный рефрактерный период; ВП - вульнерабельный (уязвимый) период; СНФ - супернормальная фаза.

Во время абсолютного рефрактерного периода сердце не может активироваться и сокращаться, независимо от силы примененного раздражения.

Во время эффективного рефрактерного периода сердце способно активироваться, но полученный электрический импульс слабый и не распространяется, вследствие чего не наступает сокращения миокарда. Эффективный рефрактерный период охватывает аб­солютный рефрактерный период и тот период, в течение которого возникает слабое элек­трическое активирование без распространения импульса. Вовремя относительного, ре­лятивного или, называемого еще частичным, рефрактерного периода, сердце может акти­вироваться при раздражении, более сильном, чем обычное. Полученный электрический импульс распространяется, хотя и медленнее чем нормально, и может привести к сокра­щению сердечной мышцы. Сумма эффективного и относительного рефрактерных периодов дает тотальный рефрактерный период. Тотальный рефрактерный период соответствует интервалу Q - Т на электрокардиограмме - электрической желудочковой систоле. Он соответствует всему потенциалу действия клетки. Абсолютный рефрактерный период соответствует комплексу QRS и начальной и средней части сегмента S-T на электрокар­диограмме. Он охватывает потенциал действия с самого его начала до, примерно, -50 мв реполяризации. Конец абсолютного рефрактерного периода определяется как момент реполяризации, после чего при дополнительном раздражении может возникнуть слабый, нераспространяющнйся электрический импульс. Эффективный рефрактерный период соот­ветствует комплексу QRS и всему сегменту S-T на электрокардиограмме. Он охваты­вает потенциал действия от его начала до, примерно, - 60 мв реполяризации. Конец эф­фективного рефрактерного периода определяется как момент реполяризации, вслед за которым при дополнительном раздражении может возникнуть медленно распространяю­щийся электрический импульс. Следовательно, разница между абсолютным и эффектив­ным рефрактерным периодом заключается в том, что эффективный рефрактерный период охватывает также часть реполяризации, примерно, между-50 и-60 мв, когда при до­полнительном раздражении может возникнуть слабый нераспространяющийся электри­ческий импульс. Относительный рефрактерный период очень короткий и соответствует волне Т на электрокардиограмме. Он охватывает конечную часть реполяризации и на­ходится приблизително между - 60 мв и концом потенциала действия.


Внерефрактерный период соответствует диастоле фазы 4 трансмембранного потен­циала. В этот период проводниковая система и сердечная мышца восстанавливают воз­будимость и способны к нормальному активнрованию.

Продолжительность рефрактерного периода различна в отдельных частях проводни­ковой системы и сократительного миокарда. Длиннее всего рефрактерный период в атрио­вентрикулярном узле. Среднее место по продолжительности рефрактерного периода за­нимает мышца желудочков, а предсердная мускулатура имеет самый короткий рефрак­терный период. Правая ножка пучка Гиса имеет более длинный рефрактерный период, чем левая.

Продолжительность рефрактерного периода не постоянная величина. Она изменяет­ся под влиянием многих факторов, но самое большое значение среди них имеет частота сердечной деятельности и вегетативная иннервация. Ускорение сердечной деятельности сокращает рефрактерный период, а замедление ее оказывает обратный эффект. Блуждаю­щий нерв увеличивает продолжительность рефрактерного периода атриовентрикулярного узла, но укорачивает рефрактерный период предсердий. Симпатический нерв сокращает продолжительность рефрактерного периода всего сердца.

Существуют две, сравнительно короткие, фазы сердечного цикла, во время которых возбудимость сердца повышена: уязвимый (вульнерабельный) период и сверхнормальная фаза.

Уязвимый период находится в конечной части реполяризации и представляет собой составную относительного рефрактерного периода. Во время уязвимого периода поро­говый потенциал понижен, а возбудимость клетки повышена. Вследствие этого, под воз­действием даже сравнительно слабых раздражителей могут возникнуть желудочковые тахиаритмии и их мерцание. Ионный механизм этого периода не выяснен. Этот период приблизительно совпадает с пиком волны Т на электрограмме и соответствует небольшой части фазы 3 клеточной реполяризации.

Сверхнормальная фаза следует непосредственно после окончания относительного рефрактерного периода, соотв. реполяризации. Она находится в начале диастолы и часто совпадает с волной U на электрокардиограмме. Возбудимость сердечной клетки в этой фазе повышена. Незначительной силы раздражители могут вызвать необычно сильное электрическое активирование и тахиаритмии. Этот период обнаруживают только при функ­циональной депрессии сердца.

Оглавление темы "Рефрактерные периоды. Токи через потенциалзависимые мембранные каналы. Электротон и стимул.":
1. Рефрактерные периоды. Относительный рефрактерный период. Абсолютный рефрактерный период.
2. Ионные токи во время следовых потенциалов
3. «Стабилизирующее» влияние ионов кальция (Ca) на потенциал покоя.
4. Токи через потенциалзависимые мембранные каналы. Локальная фиксация потенциала мембраны.
5. Токи через одиночные натриевые (Na) - каналы.
6. Токи через одиночные калиевые (К) - каналы.
7. Токи через одиночные кальциевые (Ca) каналы.я.
8. Молекулы натриевого (Na)-канала. Воротные токи. Избирательность натриевых каналов.
9. Электротон и стимул. Стимуляция и раздражение. Электротон в случае равномерного распределения тока.
10. Электротон в клетках вытянутой формы.

Рефрактерные периоды. Относительный рефрактерный период. Абсолютный рефрактерный период.

Еще одним важным следствием инактивации Na+-системы является развитие рефрактерности мембраны . Это явление иллюстрирует рис. 2.9. Если мембрана деполяризуется сразу после развития потенциала действия, то возбуждение не возникает ни при значении потенциала, соответствующем порогу для предыдущего потенциала действия, ни при любой более сильной деполяризации. Такое состояние полной невозбудимости, которое в нервных клетках продолжается около 1 мс, называется абсолютным рефрактерным периодом . За ним следует относительный рефрактерный период , когда путем значительной деполяризации все же можно вызвать потенциал действия, хотя его амплитуда и снижена по сравнению с нормой.

Рис. 2.9. Рефрактерность после возбуждения. В нерве млекопитающего вызван потенциал действия (слева), после чего с различными интервалами наносили стимулы. Сплошной красной линией показан пороговый уровень потенциала, а черными прерывистыми линиями-деполяризация волокна до порогового уровня. В абсолютном рефрактерном периоде волокно невозбудимо, а в относительном рефрактерном периоде порог его возбуждения превышает нормальный уровень

Потенциал действия обычной амплитуды при нормальной пороговой деполяризации можно вызвать только через несколько миллисекунд после предыдущего потенциала действия. Возвращение к нормальной ситуации соответствует окончанию относительного рефрактерного периода. Как отмечалось выше, рефрактерность обусловлена инактивацией Na+-системы во время предшествующего потенциала действия. Хотя при реполяризации мембраны состояние инактивации заканчивается, такое восстановление представляет собой постепенный процесс, продолжающийся несколько миллисекунд, в течение которых Na """-система еще не способна активироваться или же активируется только частично. Абсолютный рефрактерный период ограничивает максимальную частоту генерирования потенциалов действия. Если, как это показано на рис. 2.9, абсолютный рефрактерный период завершается через 2 мс после начала потенциала действия, то клетка может возбуждаться с частотой максимум 500/с. Существуют клетки с еще более коротким рефрактерным периодом, в них частота возбуждения может доходить до 1000/с. Однако большинство клеток имеет максимальную частоту потенциалов действия ниже 500/с.